National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Induction and course of programmed cell death in cancer cells after taxane application."
Kábelová, Adéla ; Jelínek, Michael (advisor) ; Gemperle, Jakub (referee)
The taxanes are a class of commonly used anticancer agents, which are very effective in treatment of breast, ovarian, prostate or lung cancer. Taxanes bind to the β-tubulin subunit of microtubules and lead to their stabilization and inhibition of depolymerization. Such microtubules lose their function to form mitotic spindle, thus arresting cells in G2/M phase and resulting in apoptosis. Unfortunately some cells are able to escape from taxanes-induced apoptosis by developing various mechanisms of resistance including alteration in taxanes target microtubules or upregulation of specific transporters that pump the drug out of cells. Other types of resistance are connected with process of programmed cell death (PCD), especially with proteins that after taxane application participate in its successful progress. Taxanes can directly or indirectly modify the activity of Bcl-2-family proteins that control mitochondrial and endoplasmic reticulum integrity, thus regulating the initiation of PCD. Caspases are executioners of PCD and caspase-2 activated by cytoskeletal disruption seems to be especially important in taxanes- induced apoptosis. In some cases can taxane treatment also result in caspase-independent cell death. Special role has protein p53 that seems to be involved only in apoptosis caused by low taxanes...
Cytochrome c and its role in apoptosis
Rajsiglová, Lenka ; Kalous, Martin (advisor) ; Švadlenka, Jan (referee)
Cell energetic metabolism and cell survival are strictly controlled by pathways in which cytochrome molecules play a central role, in particular cytochrome c. It is localized in the mitochondrial intermembrane space with other molecules cooperating in keeping energetic metabolism. Permeabilization of outer mitochondrial membrane by proteins from Bcl-2 family or changes in Ca2+ levels causes cytochrome c release into cytosol. In cytosol cytochrome c interacts with other pro-apoptotic proteins (Apaf-1, procaspase-9) cooperating to form apoptosome and phosphatidylserine. As a result of these interactions, the cell is going to apoptosis. This bachelor thesis summarizes the current state of knowledge of these processes. In the first part it focuses on the biosynthesis of cytochrome c, further on the mechanisms of its releasing from mitochondria and its interactions with other proteins within apoptosis including options of regulation of these processes.
Induction and course of programmed cell death in cancer cells after taxane application."
Kábelová, Adéla ; Jelínek, Michael (advisor) ; Gemperle, Jakub (referee)
The taxanes are a class of commonly used anticancer agents, which are very effective in treatment of breast, ovarian, prostate or lung cancer. Taxanes bind to the β-tubulin subunit of microtubules and lead to their stabilization and inhibition of depolymerization. Such microtubules lose their function to form mitotic spindle, thus arresting cells in G2/M phase and resulting in apoptosis. Unfortunately some cells are able to escape from taxanes-induced apoptosis by developing various mechanisms of resistance including alteration in taxanes target microtubules or upregulation of specific transporters that pump the drug out of cells. Other types of resistance are connected with process of programmed cell death (PCD), especially with proteins that after taxane application participate in its successful progress. Taxanes can directly or indirectly modify the activity of Bcl-2-family proteins that control mitochondrial and endoplasmic reticulum integrity, thus regulating the initiation of PCD. Caspases are executioners of PCD and caspase-2 activated by cytoskeletal disruption seems to be especially important in taxanes- induced apoptosis. In some cases can taxane treatment also result in caspase-independent cell death. Special role has protein p53 that seems to be involved only in apoptosis caused by low taxanes...
Cytochrome c and its role in apoptosis
Rajsiglová, Lenka ; Kalous, Martin (advisor) ; Švadlenka, Jan (referee)
Cell energetic metabolism and cell survival are strictly controlled by pathways in which cytochrome molecules play a central role, in particular cytochrome c. It is localized in the mitochondrial intermembrane space with other molecules cooperating in keeping energetic metabolism. Permeabilization of outer mitochondrial membrane by proteins from Bcl-2 family or changes in Ca2+ levels causes cytochrome c release into cytosol. In cytosol cytochrome c interacts with other pro-apoptotic proteins (Apaf-1, procaspase-9) cooperating to form apoptosome and phosphatidylserine. As a result of these interactions, the cell is going to apoptosis. This bachelor thesis summarizes the current state of knowledge of these processes. In the first part it focuses on the biosynthesis of cytochrome c, further on the mechanisms of its releasing from mitochondria and its interactions with other proteins within apoptosis including options of regulation of these processes.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.